##plugins.themes.bootstrap3.article.main##

Non-diphtheritic Corynebacteria have in recent times been increasingly implicated as the causative agents of various infections in humans and animals. They have also been shown to be an emerging group of multidrug-resistant bacteria. In the present study, we carried out a preliminary investigation to assess the prevalence and antimicrobial susceptibility profile of species of corynebacteria among slaughtered cattle, goats and sheep. Nasal swabs from 207 ruminants (101 goats, 91 cattle, and 15 sheep) were processed for isolation and identification of corynebacteria using standard microbiological procedures. Antibiogram of the isolates was also determined using the Kirby-Bauer disc diffusion technique. Twenty-three isolates (11.1%) distributed into six species comprising Corynebacterium xerosis (n=8), C. amycolatum (n=5) C. mycetoides (n=3) C. stationis (n=2) C. striatum (n=1) and C. efficiens (n=1) were recovered. The Corynebacterium isolates displayed high rates of resistance (31.6 – 100%) to all the antibiotics tested with multidrug resistance observed in 78.9% (15/23) of the isolates tested. Coagulase-production was also observed among 8 (34.8%) of the isolates. Our findings highlight the role of slaughtered cattle and small ruminants as potential reservoirs of multidrug resistant and zoonotic non-diphtheritic corynebacteria and thus a need for increased surveillance and characterization of this bacteria group among animals.

References

  1. Hahne J, Kloster T, Rathmann S, Weber M, Lipski A. Isolation and characterization of Corynebacterium spp. from bulk tank raw cow's milk of different dairy farms in Germany. PLoS ONE. 2018; 13(4): e0194365. doi.org/10.1371/journal.pone.0194365.
     Google Scholar
  2. Dragomirescu C C, Lixandru BE, Coldea IL, Corneli ON, Pana M, Palade AM, et al. Antimicrobial Susceptibility Testing for Corynebacterium Species Isolated from Clinical Samples in Romania. Antibiotics. 2020; 9: 31. doi:10.3390/antibiotics9010031.
     Google Scholar
  3. Tauch A, Sandbote J. Actinobacteria. In: The Prokaryotes. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F: Berlin: Springer Berlin Heidelberg, 2014, pp. 239–277.
     Google Scholar
  4. Oliveira, A, Oliveira LC, Aburjaile F, Leandro B, Tiwari S, Jamal SB. Et al. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front. Microbiol. 2017; 8:1937. doi: 10.3389/fmicb.2017.01937.
     Google Scholar
  5. Vela AI, Gracı E, Fernandez A, Domınguez L, Fernandez-Garayzabal JF. Isolation of Corynebacterium xerosis from Animal Clinical Specimens. J. Clin. Microbiol. 2006; 2242–2243. doi:10.1128/JCM.02473-05.
     Google Scholar
  6. Hernández León F, Acosta Dibarrat J, Vázquez Chagoyán JC, Rosas PF, de Oca Jiménez RM. Identification and molecular characterization of Corynebacterium xerosis isolated from a sheep cutaneous abscess: first case report in Mexico. BMC Res. Notes. 2016; 9:358. Doi: 10.1186/s13104-016-2170-8.
     Google Scholar
  7. Lücken A, Wente N, Zhang Y, Woudstra S, Krömker V. Corynebacteria in Bovine Quarter Milk Samples—Species and Somatic Cell Counts. Pathogens. 2021; 10(7): 831. doi.org/10.3390/pathogens10070831.
     Google Scholar
  8. Sengupta M, Naina P, Balaji V, Anandan S. Corynebacterium amycolatum: An Unexpected Pathogen in the Ear. J. Clin. Diagnostic Res. 2015; 9(12): DD01-DD03.
     Google Scholar
  9. Sugumaran R, Sistla S, Chavhan P, Deb AK. Corynebacterium amycolatum: an unusual cause of corneal ulcer. BMJ Case Rep. 2020; 13:e237818. doi:10.1136/bcr-2020-237818.
     Google Scholar
  10. Song SA, Shin JH. Microbiological Characteristics of Corynebacterium striatum, an Emerging Pathogen. Hanyang Med. Rev. 2018; 38(2): 93-98. doi.org/10.7599/hmr.2018.38.2.93.
     Google Scholar
  11. Ramos JN, Souza C, Faria YV, da Silva EC, Veras JF, Baio PV. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect. Dis. 2019; 19: 672.
     Google Scholar
  12. Syed MA, Ashcherkin N, Sundhu M, Hakam L, Gul S. Recurrent Bacteremia with Corynebacterium striatum After Prosthetic Valve Replacement: A Case Report. Cureus. 2019; 11. e4670.
     Google Scholar
  13. Elkayam N, Urazov A, Tuneev K, Chapnick E. Corynebacterium striatum bacteremia associated with cellulitis in a patient with cirrhosis. ID Cases. 2019; 17. e00575.
     Google Scholar
  14. Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM. Corynebacterium striatum Associated with Increased Use of Parenteral Antimicrobial Drugs. Emerg. Infect. Dis. 2016; 22(11). doi.org/10.3201/eid2211.160141.
     Google Scholar
  15. Barrow GI, Feltham RK. Cowan and Steel's Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press; 2003.
     Google Scholar
  16. CLSI. Performance Standard for Antimicrobial Disc Susceptibility Tests. Pennsylvania: Clinical and Laboratory Standard Institute; 2018.
     Google Scholar
  17. Cantarelli VV, Brodt TC, Secchi C, Inamine E, Pereira FD. Cutaneous infection caused by Corynebacterium pseudodiphtheriticum. Rev. Inst. Med. trop. S. Paulo. 2008; 50(1): 51-52.
     Google Scholar
  18. Putranto RH, Sariadji K, Khariri. Antimicrobial Susceptibility Testing for Corynebacterium pseudodiphtheriticum. Int. J. Sci. Res. 2020; 5(4): 196 - 200.
     Google Scholar
  19. Fudou R, Jojima Y, Seto A, Yamada K, Kimura E, Nakamatsu T. Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int. J. Syst. Evol. Microbiol. 2002; 52: 1127–1131. doi: 10.1099/ijs.0.02086-0.
     Google Scholar
  20. Funke G, Lawson PA, Bernard KA, Collins MD. Most Corynebacterium xerosis Strains Identified in the Routine Clinical Laboratory Correspond to Corynebacterium amycolatum. J. Clin. Microbiol. 1996; 34(5): 1124–1128.
     Google Scholar
  21. Soriano F, Zapardiel J, Nieto E. Antimicrobial susceptibilities of Corynebacterium species and other non-spore-forming gram-positive bacilli to 18 antimicrobial agents. Antimicrob. Agents Chemother. 1995; 39: 208–214.
     Google Scholar
  22. Alibi S, Ferjani A, Boukadida J. Implication of Corynebacterium species in food’s contamination. J. Coast. Life Med. 2016; 4(5): 416-419. doi: 10.12980/jclm.4.2016J6-26.
     Google Scholar